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Project Summary

The NASA Contractor Report 3930 outlines a preliminary approach

to the use of the A-scheme, coupled with shock-fitting routines,

for the numerical analysis of complicated two-dimensional,

unsteady, inviscid flows. The present Repor\t shows how the idea

can be made practical, and a general-purpose code can be

written, which contains all the shock-fltting procedures in a

"black box", transferrable from one program to another,

regardless of the complexity of the rigid wall geometries.

Strong and weak shocks, both normal and oblique, in motion or

steady, are properly detected and computed. The calculation is

extremely fast and vectorizable. Examples of quite different

nature are worked out and discussed.

Applications of the technique can and should be made to all

two-dlmenslonal problems with shocks, including intake and

exhaust flows, cascades, single and multiple airfoils, store

separation, etc. Three-dimensional extensions are anticipated.
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INTRODUCTION

The object of the present research has been the development

of codes for the numerical analysis of two-dlmenslonal (or axl-

symmetric), unsteady, Invlscld flows of perfect gases within any

range of Mach numbers where the polytroplc assumption at a

constant ratio of specific heats is valid. A special, but not

restrictive, emphasis is put on internal flows (ducts, intakes,

nozzles, and cascades).

Simplicity, accuracy and computational speed have been our

goals. We have reached them by adopting a technique which
departs from the common trend. We do not dlscretlze the

equatlons of motion in divergence form and we do not attempt to

"capture" shocks as weak solutlons of the partlal differential

equations.

Fitting of shocks agrees with their physlcal nature (in an

Invlscld model) as part of strong solutions. Thelr evaluation

is very accurate and fast If the Ranklne-Hugonlot conditions are

used explicitly. An integration technique for ordinary points,

based on the characteristic formulation of the partial

differential equations, can be made to respect the concept of

domain of dependence. In this way, the numerlcal procedure is

simple and fast, and a high degree of accuracy is reached.

Enforcement of boundary condltlons and description of the shock

envlronment are also possible without introducing arbitrary

elements. The automatic separation of certain domains of

dependence In the vlclnlty of the shock prevents the formation

of wiggles and makes the use of arbitrary damping factors

(artlflclal viscosity) unnecessary.

The integration technique for ordinary points Is described

in full detail in Ref. I, a copy of which is attached to this

Report. In partlcular, Section 7 contains all the formulas for

a practical application of the technique to orthogonal grids

(including Cartesian grids as a special case), and Section 8

does the same for H-grlds. Section 9 presents the basic

philosophy of shock-flttlng, and Section 10 outlines the

application of the idea to two-dlmenslonal shocks.

TWO_DIMENSIONAL SHOCK-FITTING

In the present Report we expand Sectlons 9 and 10 of Ref.

I, In order to describe how the shock detection technique and

the shock-flttlng technique are actually coded. The ideas and

procedures presented here supersede some of the content of Ref.
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A shock front is described by its intersections wlth grld

lines. For brevity, we denote as x-lines and y-llnes the two

families of coordinate lines in the grid, whether they are

Cartesian or curvillnear, orthogonal or not. The intersection

of a shock with an x-llne or a y-llne is called an x-polnt or a

y-polnt, respectively.

All information pertinent to shock points Is stored In

single arrayst depending on a counter, J. No attempt Is made to

organize the arrays; the shock points are stored at random,

regardless of their relative positions In the physical plane.

Cross-referenclng between the grld points (denoted by an index N

in the x-dlrectlon and an index M in the y-dlrectlon) and the

shock points Is necessary. To this effect, we use the following

Indl ces :

J JSX
,, -MS

J:('

NS NS

Fig. I

MS

NS(J) is the value of N to the left of an x-polnt or the

value of N itself for a y-polnt (Fig. I),

MS(J) ls the value of M for an x-polnt or the value of M below a

y-polnt,

JSX(N,M) is the value of J for the x-polnt lying on the Mth x_

llne to the left of the Nth y-llne, and it is zero elsewhere,

JSY(N,M) is the value of J for the y-point lying on the Nth y-

llne below the Mth x-line, and it ls zero elsewhere,

INDX(N,M) equals zero where JSX(N,M) equals zero, and I where

JSX is not zero,

INDY(N,M) equals zero where JSY(N,M) equals zero, and I where

JSY is not zero,

Jl(J) equals 0 for an x-point with the high pressure on the

left, I for an x-polnt with the hlgh pressure on the right, 2

for a y-polnt wlth the hlgh pressure below, and 3 for a y-polnt

wlth the hlgh pressure above.

In addition, the following arrays are defined:

XS(J), YS(J) are the x- and y-coordlnates of any shock point,

ANGLE(J), for an x-shock, is the angle, a, between the normal to

the shock at any shock polnt, and the x-llne (-_/2_/2),

ANGLE(J), for a y-shock, Is the angle, a, between the normal to
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the shock at any shock point, and the y-line (_ _2 _aS_2),

W(J) is the normal shock velocity at any shock point,
TMA(J) is the absolute value of the normal relative Mach number

at any shock point.

To achieve a greater generality in two dimensions, Z is no

longer defined as in (83) of Ref. 1, but it is made depend on

the velocity component normal to the shock, _:

11 - (aB+61qB-qA l)/qA
(i)

Therefore, (87) of Ref. 1 is replaced by

1
Z = {[(YM=-5)(1+6M2)] I/2 + 6(M2-I)}

( I+6 )M
(2)

The relation between the time increments of z and M (AT and AM,

respectively) is obtained from (2) as follows:

AM = (1+6)AT./{26+[2"YSM=+Y-62][ (YM=-6)(1+6M2)]-1/2-(1+6)T./M} (3)

Shock detection

Detection of x-points is performed first. Along any x,-

llne, inflection points of I.. (=u-a) with increasing a, and all

inflection points of Iz (=u+a) with decreasing a are marked.

Indeed, Fig. 2 shows how coalescence of characteristics preludes

to a possible formation of a shock. To reduce the effect of

random oscillations in the distributions of a, the local

variation in a, instead of being evaluated as Aa=an÷1-an or

Aa=an+1-an_2, is evaluated as

Aa = an+l-an_l, 2 (an+2-an_ 2) (4)

This is equivalent to fitting the distribution of a with a

straight line, approximating the actual distribution by the mean

square rule, and using the slope of that line as the slope of

a(x) at xn. A similar procedure is used to approximate

A1 (I=I_ or 12), and then the second difference, A=I, is

obtained by subtracting Aln_ 1 from Atn:

A=I = -In+1-1n.2-1n_1-1n+2(In+2+In_3 ) (5)

The cells where the inflection points are located are found

where A=In<O and A=In÷1_O. Once such cells are marked, a

tentative location for the shock is given by
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The point is not accepted as a shock point under three
circumstances:

l) Z, as deflned by (I), ls less than a prescribed tolerance,
or

2) the pressure Jump Is too low, or

3) there is a shock polnt already in the cell or in any of the
two adjoining cells.

The first crlterlon is used to dlscard "shocks" which have

too low a relatlve Mach number; Z>1.02 is a reasonable
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criterion, eliminating shocks which have M<1.03. The second
criterion is used to discriminate between shocks and contact

discontinuities (as in the breaking of a diaphra_n in a

cylindrical plpe). Indeed, the criterion for A may be

satisfied, the speed of sound my change strongly in one cell,

but pressure and velocity may remain practically the same. In

this case, the discontinuity is not a shock but a contact

discontinuity, but the test for Z may be satisfied and the

discontinuity accepted as a shock. The third criterion is used

to avoid overcrowding of shock points. It is interesting to

observe that the third criterion can be written in the simple

form:

IF(JSX(N,M)+JSX(N+I,M)+JSX(N÷2,M).NE.O)GOTO . . .

If the new shock point is accepted, Jl is set equal to 0 or

I according to the rule above. Then, a preliminary estimate of

the shock slope at that point is made. With reference to Fig.

3, we define two neighborhoods of the new shock, J: the upper

neighborhood, formed by the se_ents AB, CD, and EF, and the

lower neighborhood, formed by the segments FG, DH, and KM. We

search for other shock points on the upper neighborhood. The

Index, INDP, defined by

INDP=INDX(N,M+I )+INDX(N+I ,M+I )+INDX(N+2,M+I )+INDY (N,M+I)÷INDY (N+I ,M+I )

equals the number of such shocks. If INDP differs from zero,

the averages of the x- and y-coordinates of the shocks are

evaluated. A single point, U, is defined as the upper neighbor
of J.

Fig. 3 Fig. 4

The same procedure generates a lower point, L, if any shock

point exists in the lower neighborhood of J.

If neither U nor L are found, the new shock point, J, is

still isolated. The angle, e is set equal to O.

If both U and L exist, the abscissa of J is corrected to be

the average between the abscissas of U and L. Then, if only L

exlxts, U is set equal to J; If only U exists, L is set equal to
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J. If at least one neighbor exists, the angle _ is defined from
the coordinates of U and L, as the normal to UL and the x-llne.
By defining L--I if JI=O and L-I if J i=I,

= arc, an [(Xu-XL)/(yL-Yu)] (7)

The same procedure is repeated for y-polnts, working along

y_llnes. The above outline can be used, replacing u±a with v±a,

x with y, JSX with JSY, increments and decrements of N wlth

increments and decrements of M, and switching INDX and INDY with

one another. The "upper" and "lower" points are now points to

the right and to the left of the y-line, respectively. The

index, JI, has to be set equal to 2 or 3 according to Aa being

negative or positive. Fig. 3 is replaced by Fig. 4. Eq. (7) Is

replaced by

Shock tracking

e = arctan [ (yu-YL)/(Xu_XL) ] (8)

When the detection of new shocks Is completed, the arrays

providing the shock information may contaln data pertaining to

shock polnts already existing at the previous computational

step, as well as data pertalnlng to newly detected points.

The flrst questlon to be answered is, Dld any point, in its

motion along an x-llne or a y-llne, cross over a line of the

opposite famlly? To answer the question, a new value of NS Is

computed from the new value of XS for an x-polnt. If the new

and old values of NS differ, not only NS Is updated but some

field values must be changed. Using Fig. 5, let the shock

point, P move to a new posltlon, Q. The flow values at A, which

origlnally were pertinent to one side of the shock, are now

pertinent to the opposite slde; consequently, the code replaces

them wlth the new values at B. Opposite action has to be taken

if the shock point moves from Q to P; the values at A must be

replaced wlth the new values at C. One proceeds In a similar

way for y-shocks. Obvlously, after checking the crosslngs, the

distributions of JSX, JSY, INDX, and INDY are updated.

B A C

PQ

Fig. 5

Next, the entire array of shock points Is checked, to
ellmlnate possible duplications of shocks In the same interval.

This Is obtalned by testing whether, for an x-shock,

JSX(NS(J)+I,MS(J)) equals J or not. If it does, the J-shock is

dropped. Similarly, the J-shock is dropped If it is a y-shock
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and JSY(NS(J),MS(J)+I) does not coincide with J.

Then

performed

dropped.

a search for neighbors of all shock points is

again, as described above. All isolated shocks are

q

A q

Fig. 6

For the others, the angles are defined by (7) and (8). Shocks

whose angle Is larger than 50 ° (in absolute value) are dropped.

Accidentally, a point may have been detected as a shock

point when it belongs to a contact discontinuity instead. Both

possibilities are shown In Fig. 6. On the left, there Is a real

shock. The difference, Aq, between the velocity vectors is

normal to the discontinuity. On the right, there is a contact

discontinuity, which is parallel to Aq. A contact discontinuity

may be detected by our procedure described above. Consider for

example, a case of two uniform, parallel flows such that the

Jumps In q and a satisfy the tests performed in detection. A

pseudoshock is found but If we computed Aq.N, the result would

be identically zero. In practice, we are bound to test Aq using

nodes bracketing the alleged shock; due to the uncertainty of

the numerical approximation, we cannot eliminate pseudoshocks

only if Aq.N-O but also when the cosine of the angle between Aq

and N Is sufficiently small. An "x-shock" is then dropped if

IAu.Nz +Av.N2 J<K IAql (9)

and a "y-shock" is dropped if

÷,',v.N,I<KIAqi (I0)

where K Is, for example, .5.

At this stage we have all the ingredients needed to define

_, according to (I), at all shock points. Note that lqB-qAl of

(I) is defined by the left-hand sides of (9) and (10) for x-

shocks and y-shocks, respectively. All points having _<1.02 are

dropped. Then, M is evaluated as a function of T using (2).

These values are obtained at the end of every computational step

and are needed in the following step to update M, the shock
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velocity (W) and the shock position at every point.

Shock calculation

The shock points are updated after : all grid points

have been updated. New grid values of a and q are picked on

either side of the shock, at two nodes bracketing it (for an x-

shock, at nodes lying on the same x_llne; for a y_shock, at

nodes lying on the same y-llne). Using such values, the left-

hand sides of (9) or (10), and (I), a new value of _ is found at

each shock point and AE is determined by subtracting the

corresponding Z at the end of the previous step. Then (3)

provides AM and the problem is solved.

Once the normal relative Mach number is found, indeed, the

Ranklne-Hugoniot equations [(13) of Ref. I] are applied to

update the point on the hlgh-pressure side of the shock. The

shock velocity, W, is computed from

W = qA.N ± aAM

where qA and aA are evaluated on the node next to the shock on

the low-pressure side. The + sign holds for Jl=0,2 and the -

sign for JI-1,3. Note that

W = UAN l + VAN _ - KaAM

for an x-shock (K=-I if JI=0, I if Jl=1), and

(12)

W = - UAN 2 + VAN , - _aAM (13)

for a y-sh0ck (K=-I if JI=2, I if JI-3). The shock location is

updated by adding W/N,.At to the abscissa of an x-shock or to

the ordinate of a y-shock.

Special treatment at grid nodes nei_hborln_ shocks

Nodes In the immediate neighborhood of a shock point must

be detected because approximating derivatives by differences

between nodes on opposite sides of a shock must be avoided.

For an x-shock, such as J in Fig. 7, the points A and B are

considered first. Two subroutines, FXM(N,M,JSX(N,M)), and

FXP(N+I,M,JSX(N+2,M)) are called, where N=NS(J), M=MS(J). The

first deals with point A, the second with point B. If the third

index in their calling sequence is different from zero, another

shock point exists in AG or BQ, respectively. In that case, all

f_ are set equal to zero (the flow is assumed not tou change
A

between the two shocks). Otherwise, at A, any f with ai
negative coefflcient Is approxlmated using differences taken

between A and G; at B, any f. with a positive coefficient is
1

approximated using differences taken between Q and B.
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Continuing our analysis of x-shocks and moving to Fig. 8,

we must consider the possibility of shock waves located _s the

oblique line issuing from J. An index, ILL, is defined as

ILL = INDY(N-I,M)+INDY(N,M)+INDY(N+I,M)

and then the following statement is used:

IF(JSX(N,M+I)+JSY(N-I,M+2).NE.O) CALL FYM(N,M,JSX(N,M-I),ILL,O)

The test detects shocks on the CDE line; in this case, in

computing A, differences to be taken between C and A are taken

between D and A instead, unless ILL Z 2 (in which case a y-shock

crosses the DA llne and differences are set equal to zero).

The same analysis, with obvious changes, is repeated in the

other three quadrants around J. For a y-shock, the entire

procedure is easily modified by interchanging x and y, and N and
M.

APPLICATIONS

Applications of the technique have been made, so far, to

test the dependability of the shock-fitting routines, their

robustness and the possibility of shaping the entire shock-

fitting technique as a black-box for general purposes (the major

objections raised against the _-scheme and shock-fitting,

indeed, have been that such techniques have only a limited reach

and require a skilled personal intervention every time a new

problem is to be studied). TWo applications have been made

using H-grids. In these cases, however, only x-shocks have been

considered. Four more cases have been studied, containing both

x-shocks and y-shocks. Two of these cases have been treated

using Cartesian grids and one using a curvilinear orthogonal

grid.
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Transonic flow in a duct

The interest of the problem lies in the appearance of

oblique shocks in supersonic flows. Such shocks tend to become

steady, if the oncoming supersonic flow is steady. According to

the geometry of the duct and the upstream Mach number, however,

the shocks may be reflected regularly or produce a Mach

reflection. Details of the latter case are shown in Figs. 9

through 15. The duct has a constriction, produced by a straight

wall at a 20% slope. The upstream flow is uniform, with a Math

n_ber equal to 1.6. The calculation is started impulsively, by

distributing uniform values at all grid points, except along the

oblique wall. Such an impu]sive start is representative of the

rapid acceleration of the duct from right to left, starting at a

state of rest and reaching a cruising velocity at M=1.6.

Numerical experiments performed with different, high but finite

accelerations showed that, as soon as the cruising speed is

reached, the flow field is not radically different from the one

obtained assuming an impulsive start.

Fig. 9 shows isomachs at a preliminary stage (obtained

using a I00x30 mesh). An oblique shock is forming at the origin

of the oblique wall. In the vicinity of the corner, the shock

is practically steady and it has the correct angle for an

obliques steady shock in a supersonic flow. Note that, despite

the weakness of the shock, the correct angle could not be

obtained without shock-fitting. A shock of this type, captured

by the _-scheme, would be wrong by about 3 o. In Fig. 10 the

oblique shock has extended almost to the bottom wall, and a

reflected locus of higher pressure gradients (not a shock yet)

begins to show. In Fig. 11 the oblique shock is apparently

producing a regular reflection. Such a pattern, however, is not

stable. The oblique shock is not stralght; its strength

decreases towards the bottom wall and a regular reflection is,

for a short time, physically possible.

As the strength of the oblique shock increases, a Mach

reflection must appear, followed by a region of subsonic flow.

This new phase of the evolution is shown in Fig. 12 (which, as

the following figures, has been obtained using a 150x30 mesh).

It is worth noting that the transition from a regular reflection

to a Mach reflection occurs smoothly as the calculation

proceeds, without any need for external intervention or special

c0dings.

As the subsonic region increases in size, the Mach stem is

pushed upstream (Fig. 13). Step-by-step movies of the

calculation show that the upstream motion starts at the triple

point and propagates downwards. Eventually, the reflected shock

itself is followed by a subsonic region; its upper point reaches

the end of the oblique wall and continues moving upstream (Fig.

14). The calculation is interrupted when the Mach disc has

swallowed the entire original oblique shock and a straight shock

remains, pushed upwards by the subsonic region in a uniform
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Fig. 9

Fig. 10

Fig. 11

[

motion (Fig. 15). In the right portion of the duct, expansion

waves and recompression shocks are visible.

The appearance and disappearance of weak oblique shocks and

strong, almost normal shocks is well controlled by the code, as

well as the local behavior and motion of the triple point and

the transition from regular reflection to Mach reflection. The

entire calculation takes about 50 seconds on a CRAY X-XMP with a

150x30 mesh.

With minor alterations, the same program can be used for

the analysis of flows in ducts of different geometries (not

necessarily with a straight bottom wall). Moreover, a given

geometry may be rotated by an arbitrary angle, still maintaining
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one family of lines in the H-grld parallel to the original y-

axis. For example, Fig. 16 shows the H-grld for the same

geometry of Fig. 9, when the duct is turned 30 o

counterclockwlse. Such a device may allow a calculation to be

made for a staggered cascade_ still keeping a set of grid lines

normal to the cascade axis. This may be important to simplify

eventual extensions of the technique to quasl-three-dlmenslonal

analyses of cascades.

A

A

A

7

Z_

A<I

/

!

1
I!....

Fig. 16

Intakes

To analyze the flow within and around a two-dlmenslonal

intake, of a shape similar to the one shown in Fig. 17, we
employ a variant of the program used for inner flows in ducts.

The intake may have a non-rectll inear bottom wall (which extends

in front of the intake for an arbitrary length); the cowl llp

must be sharp. The geometry shown in Fig. 17 was suggested in

1984 by a GAMM panel for a Workshop on computational techniques,

to be held in Paris in June 1986 (Ref. 2). Despite the eventual

appearance of some French results after the Workshop, it is

worth noting that our work reported here provided the sole clean
results at Workshop time.

Fig. 17
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Out program works on two H-grlds. The lower one Is llmlted

by the bottom wall, the upper wall inslde the lntake, and a

straight horizontal line Issulng from the cowl llp. The same

straight llne, together wlth the outer wall of the cowl, ls the

lower boundary of the upper grid, whose upper boundary Is

another straight horizontal llne, located at an arbitrary

dlstance form the intake. The vertlcal grid llnes are equally

(and evenly) spaced In both grids. The other grld lines are

stretched by the geometry In the physical space; In the

computational space, their Ay are constant In each grld, but

different from one grld to the other (Fig. 18).

Flg. 18

In each grid, the computation proceeds as described above.

The only novelty here Is in the matching of the grids. In the

outer grid, fly Is unknown; In the inner grid, f_Y is unknown.

Y and f_YIn addition, according to the slgn of v, f3 are unknown

either In the outer grld (if v>O) or In the inner grld (If v<O).

In conclusion, four unknowns have to be determined at every

point common to the two grids; such unknowns are computed from

Eqs. (64) through (67) of Ref. I, by matching the tlme

derivatives of a, u, v, and S, considered as pertalnlng to the
inner grid or the outer grid.

For the GAMM Workshop, two problems were proposed:

I) a case wlth M®-2 and Me-0.27 , which should produce an

oblique, attached shock at the inlet bottom wedge and a detached

shock In front of the cowl, resulting In a _ shock

conflguratlon, and
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2) a case with low free stream Mach number, M®-1.2 and a
prescribed value of M at the engine (Me-0.3), which should
produce a weak, but practically normal, shock at a large
dlstance from the intake.

We started our computations by dlstrlbutlng free stream

values over both computatlonal grlds, except within the intake,

where the Mach number was assumed to decrease linearly from M®

to M and v was adjusted on the walls to make the normal
e

veloclty component vanlsh.

In the first case, the computational region Is limited by

x--15 to the left and by the intake exlt to the right, by the

bottom wall and by y=40. The grid has 150 intervals in the x-

direction, 15 intervals across the intake and 45 intervals above

the cowl. Results for thls calculation are presented in Figs.

19 through 25. An oblique shock is generated by the wedge to

the left of the intake, and slowly grows and straightens up

within the free stream. A normal shock appears within the duct

and moves towards the intake throat, acquiring strength. A

third oblique shock Is generated by the cowl llp and soon

detaches itself. The flow pattern In front of the intake after

300 steps (t-41.8) Is shown In Flg. 19; the shock inside the

duct is not visible. After 800 steps (t-116.19) the pattern has

changed as shown In Flg. 20; here we also see the normal shock,

shortly after it reaches the throat. At thls stage, the latter

slows down and looses strength, until it disappears altogether

(Fig. 21). The shock pattern remains well stabilized rather

soon; the flow within the intake, however, takes a long tlme to

become steady. Even after 6000 steps, minor waves still move

back and forth through the intake, carrying information from the

exlt boundary (prescribed Mach number) all the way to the

entrance, and reflecting it at the lip shock. The stabilization

of the flow in the intake is well described by a history of the

mass flow. The mass flow is computed by integrating pu by a

trapezoidal rule between the bottom boundary and the coordinate

llne reaching the cowl llp, followed by the upper wall of the

intake. The mass flow is obviously going to be constant until

part of the gas spills above the line; after reaching the

entrance section, the mass flow should remain constant again, at

a lower level. So long as the flow Is unsteady, the mass flow

Is not constant. In particular, if there Is a shock moving to

the left, the mass flow behind the shock is smaller than in

front of It; if the shock moves to the right, the mass flow

increases across the shock. Part of the mass flow history

during 6000 computational steps Is presented In Flg. 22. At the

beginning, very large waves appear In the intake. Minor wiggles

In the graph, to the left of the section where the spillage

begins, are a defect In plotting; the mass flow is computed, as

we said, by a trapezoidal rule of integration, disregarding the

presence of the oblique shock. The last plot of mass flow shows

a practically constant value all along the intake. Figs. 23, 24

and 25 show the distributions of M, Cp and S over the walls of
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the intake. Note the Jump in entropy at A, across the first
oblique shock, and a second small Jumpon the bottom wall,
across the second shock. The entropy at E Is much larger,
because of the higher strength of the second shock In its
vicinity. As a consequence, the Machnumberon the upper wall
of the intake (ED) is lower than on the lower wall (AB), except
at the exit, where the Machnumber is prescribed. A movie of
the evolution of the shock pattern, until a steady state is
reached, is available.

The second case needed a very hlgh upper grid, because the

bow shock tends to an almost vertical position and it is hard to

impose correct boundary conditions behind it when It reaches the

upper boundary. Even using the grids extended over the regions

shown In Fig. 26, we could not reach a steady solution, since

the root of the shock still moves slightly to the left when

spurious disturbances start propagating downwards form the

intersection of the bow shock and the upper boundary. A plot of

constant Mach lines at the end of the computation Is shown in

Fig. 27. The standoff distance history is given In Flg. 28. The

solid line is actually computed; the broken llne Is a guess of

what the standoff distance would be if the computation were

continued in a taller region. The final mass flow distribution

(as defined for the first case) is given In Fig. 29. A slow

decrease In mass flow follows the bow shock, because of an

increasing upward deflection of the subsonic flow at the upper

grid line. Conversely, the mass flow through the intake is

perfectly constant, except for a slight jump at the location of

the shock inside the duct, because the shock is not perfectly

stabilized yet.

Complex Mach reflection

The applications described above used a set of routines

considering x-shocks only. Generalization of the procedure to

flow fields for which both x- and y-shocks must be treated was

tested In the following problems.

Firstly, we considered a problem which has been extensively

discussed by Woodward and Colella (Ref. 3), the complex Mach

reflection of a normal shock on an oblique wall. We use the

same Cartesian grld as in Ref. 3, although wlth fewer points.

The impinging shock has a Mach number of 10, so that the Mach

number of the flow behind it is I .83. The impinging shock forms

an angle of 60 ° with the wall. The grid Is parallel and

orthogonal to the wall. Wlth the given data, the reflected

shock cannot be attached to the wall, but we force it to be, to

match the assumptions of Ref. 3. The flow is self-slmllar; our

calculation, however, begins when the impinging shock has Just

cleared the leading edge of the wall. We must let the pattern

develop and we expect to reach self-slmilarlty only after a

reasonable resolution has been obtained. The main features of

this case of complex Mach reflections are: (i) the impinging

-16-
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shock, moving at a high speed into a gas at rest, and leaving

behind a region of supersonic flow and high pressure (this is a

novel case of subsonlc-to-supersonlc transition), (ll) a Mach

stem, moving even faster and growing in height, (Ill) a curved

shock, beginning at the leading edge of the wall and practically

normal to it, which turns into a shock parallel to the wall,

(iv) a kink in the curved shock, followed by a short, weak shock

ending in a triple point on the impinging shock, (v) a contact

discontinuity stemming from the triple point and reaching the

wall, (vl) an extremely weak shock stemming from the kink and
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polntlng towards the contact discontlnuity. In our calculation,

no attempts have been made to flt the contact discontinuity; the

shocks, however, have all been fltted. Thls problem requires

the complete fitting technique, for shocks oriented In any

direction. Typical results are shown In Fig. 30 (In p, in p, S,

u-13.6626, and v). Our results should be compared with Fig. 4

of Ref. 3. Note in particular that our plot of u-13.6626 has to

be compared with their plot of vx-11.547; the difference In the

subtractlve constant is due to a different scaling of

velocities. Symbols for the fitted shocks are not shown in Flg.

30 (they are too large and the shock points are too close to one

another; they would produce a wide black band without allowing

- 19-
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points of dlfferent nature to be dlfferentlated). Consequently,

the plots look llke the ones obtained by shock-capturlng

techniques. The comparison with the best results of Ref. 3 Is

excellent. The entire calculation takes about 69 seconds for

523 steps on a CRAY-XMP computer.

In the following figures, Figs. 31 through 36, plots of

constant Mach number llnes at different steps are presented, all

scaled in a self-slmllar fashion. At step 50 (Fig. 31), the

perturbed region Is confined to a 30x6 mesh; the resolution is

extremely poor. Nevertheless, the impinging shock and the Mach

stem are well defined, and so Is the arched portion of the
refracted shock. The lack of resolutlon Is noticeable

particularly In the right portion of the perturbed region. At

step 100 (Flg. 32), the perturbed region is covered by a 57x11

mesh. Wlth Increasing resolution, the number of fltted shock

points Increases, generating continuous shock lines. Note that

JI equals 0 at points marked by circles, I at points marked by

crosses, and 2 at polnt marked by triangles. Yet, the right-

hand slde of the figure leaves much to be desired. In Flg. 33,

the pattern at step 150 is shown without the mesh, for clarity.

The mesh coverlng the perturbed region Is now 83x16. Note the

appearance of three x-shocks wlth JI-1 at the extreme left.

Note also the lncrease In details at the right. Flnally, see In

Figs. 34, 35, and 36 the continuing Improvement In details at

steps 200, 400, and 520, where the meshes contain I00x20, 168x38

and 208x49 cells, respectively. In the last figure, the shock

fronts become a thick blur; If the clrlest crosses and trlangles

are removed, Flg. 37 results where, once again, the plot takes

on the typical aspect of a plot obtalned by applying a

- 20-
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successful shock-capturing code. Two movies have been made,

showing the evolution of isomach patterns for this case; the

first In real space, and the second In a self-slmilar mode.

Propagation of a circular shock

The second application of the code, using both x-shocks and

y-shocks, is the analysis of the propagation of a circular shock

into a gas at rest. We start with a prescribed circular shock,

inside which speed of sound, velocity a modulus and entropy are

constant (consistent with the shock strength), and the velocity

vector is oriented radially. To avoid physical inconsistencies,

an inner region is cut off from the flow field (ABCD in Fig.

38). This exercise has been performed solely to test the

symmetry of the code in an axlsymmetric problem, analyzed on a

Cartesian grid. We did not try to preserve the axial symmetry

of the core of the perturbed region; neither did we attempt to

force the boundary conditions at the inner boundary to have a

simple physical interpretation. The computational grid is

Cartesian and the grid size is .005. The initial configuration

of the shock is shown in Fig. 38. The segnents issuing from the

shock points (which are coded as in the previous exercise) are

proportional to M-I (where M is the shock Mach number) and their

direction is the computed normal to the shock. Successive

stages are shown in Figs. 39 through 41. The shock expands well

and symmetry is preserved, for all practical purposes. A

perfect symmetry is hard to achieve; for example, mesh crossings

may occur at two successive steps for y-shocks in the upper or

lower half of the figure, as a consequence of different round-

off or truncation errors. This produces minor local losses of

symmetry, which have to be reabsorbed over a few computational

steps. We are not concerned with such imperfections; we are

happy to see that they do not degenerate or create

instabilities, and that the general trend is not affected by

them.

Expansion from a duct into a large cavity

In the third application of the code, using both x-shocks

and y-shocks, we analyze the flow produced when a normal shock,

travelling in a straight duct, reaches the end of the duct and

propagates into a gas at rest at constant pressure in an

infinite cavity. As the flow expands around the rlm of the

duct, its pressure falls well below the ambient pressure. Along

the wall of the cavity, thus, a sudden recompresslon must take

place. Considering the Mach number of the expanded flow, which

is at least 6.819, the recompresslon may occur only through a

normal shock. In an Invlscld model, a steady shock would

decrease the total pressure to a value, far below the ambient

pressure. Therefore, a reclrculatlon Initlates along the

vertical wall of the cavity, and the flow separates at the rlm,

forming a plume. As the plume develops in length, a large
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:ig. 37

vortex appears under it, and moves outwards. The vortex should

eventually be carried away, leaving a dead water region near the

wall and under the plume, at the same pressure as the original

pressure in the cavity. The final shape of the plume should be

consistent with the pattern computed under the assumption of_

steady flow, bounded by a constant pressure streamline issuing
from the rim of the duct.

The shock Mach number is 2. Our calculation (on a basic

Cartesian square grid with 200 intervals in either direction)

may provide a description of the first phase of the expansion or

a coarser analysis of the evolution of the flow over a longer

period of time, by simply changing the number of intervals

across the exit section of the duct. We used 7, 21 and 42

points across.

The first test was made against an experimental interferogram

(Ref. 4, as quoted by Eel. 5), the main features of which are

sketched in Fig. 42, top. Density contours, as computed by us,

are shown in the other two parts of Fig. 42. The figure in the

middle has been obtained using 21 points, and the one at the

bottom using 42 points. The agreement, in both cases, is good.

Using only 7 intervals across the duct, we can proceed farther

in time; Figs. 43 and 44 show plots of isomechs at successive

stages of evolution (steps 200 and 400). The presence of

vortices is suggested by closed isomachs. To show the evolution

of the vortices more clearly, we reproduce a couple of frames

from a movie of streaklines (Figs. 45 and 46). Circles

represent particles originally found in the cavity, when the gas

was at rest; crosses represent particles issuing from the duct

at regular intervals (every third computational step). The

precursor shock, as it appears In the preceding figures, has

been drawn here as a broken line. One can see the compression

of the original particles behind the shock (weaker at the

bottom, where the shock is merely an acoustic wave). The effect

of the recompression shock in the plume is much stronger. The

contact surface, separating the original gas from the gas

issuing from the duct, is shown by the transition between

circles and crosses. The large vortex under the plume expands

and moves out, as anticipated. The density in the vortex is
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very low, as the almost total absence of tracking particles

reveals. This result is consistent with the Isopycnlc plots of

Fig. 42. The isomach plots reveal the formation of the plume

which, in its first portion, is practically stabilized. The

slope of the plume edge is the same as the one evaluated by the

steady state analysis, mentioned above. The plume edge is also

evident in Figs. 45 and 46. As the calculation proceeds, a

distant observer will not be able to distinguish between our

plots and a plot of a theoretical inviscld plume, limited by a

sharp contact discontinuity.

Transonic flow in a duct with a 180 ° bend

Finally, we analyze the flow produced by a shock, entering

a curved duct with an original shock Mach number of 3. The

shock is followed by a uniform supersonic flow (Mml .6), and we

assume that the flow maintains its values at the entrance of the

duct during the entire analysis. The duct itself is generated

by conformal mapping from a rectangle, and a computational

orthogonal grid is generated simultaneously, and it appears as

in Fig. 47. In the example presented here, we use a 150x30 mesh
for the calculation.

As the shock is about to penetrate the region of highest

curvature (Fig. 48), a slight recompression follows it near the

Inner wall, in turn followed by an expansion (the latter being

the obvious consequence of the duct geometry acting on a

supersonic flow). Later on (Fig. 49) the expansion and

recompresslon become stronger; part of the shock near the inner
wall is followed by a subsonic flow. The shock Itself cannot

remain orthogonal to the outer wall; neither can it afford a

regular reflection. A Mach stem originates, followed by a short

reflected shock, almost parallel to the outer wall.

In Fig. 50, we see a bigger subsonic region, which is now

followlng the longer portion of the original shock. The

reflected shock is much longer, and a recompresslon shock

appears to terminate the strong supersonic expansion near the
inner wall.

The shock pattern in Fig. 51 clearly reveals shocks of

different natures. First, we see what is left of the original

shock, and a Mach stem of increased length. The reflected shock

stemming from the triple point has become very long and is

pushed towards the inner wall by the hlgh-pressure region

produced by the curvature of the outer wall. The recompresslon

shock has also grown in length; so much, that it starts

interfering wlth the reflected shock. Inspection of the

velocities shows that a small reverse-flow region is present in

the hlgh-pressure zone behind the recompresslon shock.

The evolution continues in Fig. 52, where we see the

reflected shock on the verge of hitting the Inner wall. Part of
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it, dlstorted, merges wlth the recompresslon shock and becomes
the llmlter of the supersonic reglon. In Figs. 53 and 54,

isobars and Isentroplc llnes are shown, after removing the

symbols for the shocks. From Fig. 53 It Is evident that the

highest pressure ls on the outer wall of the elbow; pressures

below the value in the gas at rest are denoted by dotted llnes.

It Is also important to note that the orlglnal shock has lost

most of Its strength, whilst the Mach stem Is becoming more

important. The same conclusion can be drawn from Fig. 54.

Indeed, the entropy jump across the Mach stem is about the same

as It was across the Inltlal shock (the highest entropy value

behlnd the Mach stem equal the constant value In the oncoming

flow). The oncoming flow Itself Is steady and isentroplc; the

particles whlch underwent the strong lsentroplc expansion near

the inner wall are violently recompressed, and thls produces the

dark reglon of very hlgh entropy, visible In Fig. 54.

The last phase of the evolution begins as shown In Fig. 55.

The Mach stem keeps growing, and the original shock is reduced

to a negligible strength. The reflected shock bounced back from

the inner wall and burst Into three parts. The first is still

attached to the triple polnt; the second seems to hang from the

inner wall; both have practically lost all strength. The third

part became part of the steady recompresslon shock. Note again

the entropy distribution In Fig. 56, for whlch the above

comments can be repeated. Finally, the Mach stem ends spanning

the entire duct and assumes the role played by the original

shock. The flow In the elbow becomes steady, wlth the

recompresslon shock playing the same role as the embedded shock

on a transonic airfoil; Its strength Is very high near the inner

wall, and It tapers down to zero somewhere In the middle of the

duct. As a consequence of the entropy losses, the outgoing

shock Is no longer as strong as the orlginal shock (Fig. 57).

CONCLUSIONS

The numerical experiments performed so far on a variety of

problems, wlth different geometries, flow conditions and mesh

resolutions (samples of which were presented above) seem to

prove that our technique combining the _-scheme wlth shock-

fitting Is accurate, fast and robust. The shaping of the

shock-flttlng code Into a "black box" allows it to be used to

analyze flows very different In nature, wlthout requlrlng

special recodlngs. The entlre technique Is, thus, very simple

and easy to apply. We conslder our work on two-dlmenslonal flow

practically concluded, and we anticipate the possibility of

extending the technique to three-dlmenslonal, unsteady flows
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wlthout major variations.
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